
Information Coding / Computer Graphics, ISY, LiTH

Lecture 4
The Fast Fourier Transform (Mario Garrido)

Sorting on GPU

OpenGL interoperability



Information Coding / Computer Graphics, ISY, LiTH

Lecture questions
1) What is the challenge in parallizing the FFT?

2) In what way does bitonic sort fit the GPU 
better than many other sorting algorithms?

3) What is the advantage of using CUDA 
OpenGL interoperability?



Information Coding / Computer Graphics, ISY, LiTH

Sorting on GPUs
Revisiting some algorithms from lecture 6:

Some not-so-good sorting approaches

Bitonic sort

QuickSort

Concurrent kernels and recursion



Information Coding / Computer Graphics, ISY, LiTH

Adapt to parallel algorithms
Many sorting algorithms are highly sequential

Suitable for parallel implementation?

• Data driven execution

• Data independent execution



Information Coding / Computer Graphics, ISY, LiTH

Data driven execution
Computing pattern depends on data

Usually harder to parallellize!

Example: QuickSort.



Information Coding / Computer Graphics, ISY, LiTH

Data independent execution
Known computing pattern

Easier to parallellize - always the same plan

Example: Bitonic sort



Information Coding / Computer Graphics, ISY, LiTH

Bubble sort
Loop through data, compare neighbors

Extremely sequential

Inefficient

Parallel version: Bubble sort with odd-even transposition 
method

Compare all items pairwise

Two phases, ”odd phase” and ”even phase” (shifted one 
step”



Information Coding / Computer Graphics, ISY, LiTH

Bubble sort, parallel version
Bubble sort with odd-even transposition method

Compare all items pairwise

Two phases, ”odd phase” and ”even phase” (shifted one 
step”

Fully sorted after n phases

Even phase

O(n2)

Odd phase



Information Coding / Computer Graphics, ISY, LiTH

Suitable for GPU?
Not as bad as it seems at first look:

• Data independent

• Excellent locality

• Pretty good possibilities to use shared memory (but with 
some costly transfers at edges between blocks). Thus close 

to optimal in global memory transfers.

• But certainly not optimal at very large sizes

”Better” algorithms donʼt necessary beat this all that easily!



Information Coding / Computer Graphics, ISY, LiTH

Rank sort (lab 6)
Count number of items that are smaller

Easy to parallelize:

• One thread per item

• Loop through entire data

• Store in index decided from count of number of smaller 
items.



Information Coding / Computer Graphics, ISY, LiTH

Suitable for GPU?
Again, not as bad as it seems at first look:

• Data independent

• Excellent locality - especially good for broadcasting (e.g. 
constant memory). Also suitable for shared memory.

• Again, O(n2): Will grow at very large sizes

Two bad ones that are not quite as bad as they seem.

N parallel iterations may beat NlogN sequential ones!



Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort
(As described in lecture 6)

Bitonic set: Two monotonic parts in different direction.



Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort
(According to Batcher:) Let a be a bitonic set with a maximum 

at k, consisting of two monotonic parts, one increasing, a- (from 
item 1 to k) and one decreasing, a+ (k+1 to n)

Then two new sets can be constructed as

aʼ = min(a1, ak+1), min(a2, ak+2)…
a” = max(a1, ak+1), min(a2, ak+2)…

These two sets are also bitonic and max(aʼ) ≤ min(a”)!

a”
aʼa- a+



Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort by divide-and-
conquer

Bitonic sort works on a bitonic sequence: 
partially sorted

The parts must be sorted. Sort them by 
bitonic sort!



Information Coding / Computer Graphics, ISY, LiTH

7
1
8
3
5
6
2
4

1
7
8
3
5
6
4
2

1
3
8
7
5
6
4
2

1
3
7
8
6
5
4
2

1
3
4
2
6
5
7
8

1
2
4
3
6
5
7
8

1
2
3
4
5
6
7
8

Bitonic sort example

Bitonic 
sort of 
smaller 
part

Reverse 
parts 
(bitonic 
merge)

Bitonic 
sort of 
main 
part

Reverse 
parts 
(bitonic 
merge)



Information Coding / Computer Graphics, ISY, LiTH

Bigger example
The problem scales nicely, uniformly

More stages gives longer stages (Image from 
Wikipedia)



Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort
• Data independent, no worst case

• Fast: O(n·log2n) (Why?)

• Good locality in some parts

but

• Big leaps in addressing for some parts



Information Coding / Computer Graphics, ISY, LiTH

QuickSort
Very popular algorithm for sequential 

implementation
Choose 
pivot

Compare to pivot, form two 
subsets, repeat

Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expect QuickSort to be nothing but optimal



Information Coding / Computer Graphics, ISY, LiTH

QuickSort is
Fast: O(n·logn) in typical cases

O(n2) in the worst case

Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expects QuickSort to be nothing 
but optimal



Information Coding / Computer Graphics, ISY, LiTH

QuickSort on GPU
Initially ignored as impractical

CUDA implementations exist

Data driven approaches increasingly suitable as 
GPUs become more flexible



Information Coding / Computer Graphics, ISY, LiTH

Parallel QuickSort
Several stages to consider:

• Pivot selection. Usually just grab one.

• Comparisons

• Partitioning

• Concatenate result



Information Coding / Computer Graphics, ISY, LiTH

Pivot selection
If we could always pick a pivot that splits the data 

in half…

That 
would be 
greeat…



Information Coding / Computer Graphics, ISY, LiTH

but you canʼt do that without sorting! 
But how about a random one?

There is a worst case caused by bad pivots. Live with it!



Information Coding / Computer Graphics, ISY, LiTH

Comparisons
Easy to parallelize

One thread per comparison not unreasonable! 
(GPUs donʼt have a problem with many threads!)

No problem!



Information Coding / Computer Graphics, ISY, LiTH

Partitioning
The big problem!

Sequential partitioning: Bad!

Parallel partitioning 1: Atomic fetch & increment. 
(GPUs have atomics!)

Parallel partitioning 2: Divide and conquer



Information Coding / Computer Graphics, ISY, LiTH

Recursion
GPUs canʼt do recusion efficiently… or can they?

New in Kepler: Concurrent kernels

Not only a matter of launching kernels from CPU!

A kernel can spawn new kernels!

Do recursion by spawning new kernels!



Information Coding / Computer Graphics, ISY, LiTH

Concurrent kernels, Dynamic Parallelism

Less work for the CPU to manage the computation.



Information Coding / Computer Graphics, ISY, LiTH

Recursion can look like this:

Source: 
http://blogs.nvidia.com/blog/2012/09/
12/how-tesla-k20-speeds-up-
quicksort-a-familiar-comp-sci-code/

But… does this 
really do a good 
job on partitioning?



Information Coding / Computer Graphics, ISY, LiTH

Advantages
• Less work for CPU

• Less synchronizing (from CPU side)

• Easier programming!

They claim it 
matters this 
much (but your 
milage will vary)



Information Coding / Computer Graphics, ISY, LiTH

Recursive CUDA kernels, a promising 
improvement

Big change in GPU computing?

Southfork has GPUs that support it.


